SW-ELM: A summation wavelet extreme learning machine algorithm with a priori parameter initialization
نویسندگان
چکیده
Combining neural networks and wavelet theory as an approximation or prediction models appears to be an effective solution in many applicative areas. However, when building such systems, one has to face parsimony problem, i.e., to look for a compromise between the complexity of the learning phase and accuracy performances. Following that, the aim of this paper is to propose a new structure of connectionist network, the Summation Wavelet Extreme Learning Machine (SW-ELM) that enables good accuracy and generalization performances, while limiting the learning time and reducing the impact of random initialization procedure. SW-ELM is based on Extreme Learning Machine (ELM) algorithm for fast batch learning, but with dual activation functions in the hidden layer nodes. This enhances dealing with non-linearity in an efficient manner. The initialization phase of wavelets (of hidden nodes) and neural network parameters (of inputhidden layer) is performed a priori, even before data are presented to the model. The whole proposition is illustrated and discussed by performing tests on three issues related to time-series application: an “input-output” approximation problem, a one-step ahead prediction problem, and a multi-steps ahead prediction problem. Performances of SW-ELM are benchmarked with ELM, Levenberg Marquardt algorithm for Single Layer Feed Forward Network (SLFN) and ELMAN network on six industrial data sets. Results show the significance of performances achieved by SW-ELM.
منابع مشابه
عیبیابی سازهها با استفاده از شاخص تابع پاسخ فرکانسی و مدل جایگزین مبتنی بر الگوریتم ماشین یادگیری حداکثر بهینه شده
Utilizing surrogate models based on artificial intelligence methods for detecting structural damages has attracted the attention of many researchers in recent decades. In this study, a new kernel based on Littlewood-Paley Wavelet (LPW) is proposed for Extreme Learning Machine (ELM) algorithm to improve the accuracy of detecting multiple damages in structural systems. ELM is used as metamo...
متن کاملModeling Discharge Coefficient of Side Weir on Converging Channel Using Extreme Learning Machine
In this study, the discharge coefficient of side weirs located on converging channels was simulated for the first time using a new method of Extreme Learning Machine (ELM). To examine the accuracy of the numerical model, the Monte Carlo simulations were used and the experimental values validation was conducted by the k-fold cross validation method. Then, the input parameters were detected for s...
متن کاملA Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coeffi...
متن کاملAn Expert Diagnosis System for Parkinson Disease Based on Genetic Algorithm-Wavelet Kernel-Extreme Learning Machine
Parkinson disease is a major public health problem all around the world. This paper proposes an expert disease diagnosis system for Parkinson disease based on genetic algorithm- (GA-) wavelet kernel- (WK-) Extreme Learning Machines (ELM). The classifier used in this paper is single layer neural network (SLNN) and it is trained by the ELM learning method. The Parkinson disease datasets are obtai...
متن کاملAdaptive Wavelet Extreme Learning Machine (AW-ELM) for Index Finger Recognition Using Two-Channel Electromyography
This paper proposes a new structure of wavelet extreme learning machine i.e. an adaptive wavelet extreme learning machine (AW-ELM) for finger motion recognition using only two EMG channels. The adaptation mechanism is performed by adjusting the wavelet shape based on the input information. The performance of the proposed method is compared to ELM using wavelet (W-ELM0 and sigmoid (Sig-ELM) acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 123 شماره
صفحات -
تاریخ انتشار 2014